$$
\left[\mathrm{NiCl}_{2}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}
$$

title compound is isomorphous with the related Pd compound (Steffen \& Palenik, 1976). The overall geometry of both compounds is the same: the major difference stems from shorter $\mathrm{Ni}-\mathrm{P}$ and $\mathrm{Ni}-\mathrm{Cl}$ distances (0.08 and $0.06 \AA$ respectively).

The investigations were supported in part (ALS) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

References

Alper, H. (1975). J. Organomet. Chem. 84, 347-350.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gosselink, J. W., Brouwers, A. M. F., van Koten, G. \& Vrieze, K. (1982). J. Chem. Soc. Dalton Trans. pp. 39.7-406.
Gosselink, J. W., Bulthuis, H. \& van Koten, G. (1982). J. Chem. Soc. Dalton Trans. pp. 1342-1348.
Gosselink, J. W., van Koten, G., Vrieze, K., Zwanenburg, B. \& Lammerink, B. H. M. (1979). J. Organomet. Chem. 179, 411-419.
Gotzfried, F. \& Beck, W. (1980). J. Organomet. Chem. 191, 329-338.
Kriege-Simondsen, J. \& Feltham, R. D. (1983). Inorg. Chim. Acta, 71, 185-194.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAYre, p. 528. Oxford: Clarendon Press.
Steffen, W. L. \& Palenik, G. J. (1976). Inorg. Chem. 15, 2432-2438.

Acta Cryst. (1987). C43, 1880-1882

Structure of (Acetato)dibromobis(triphenylphosphine)osmium(III)

By C. C. Hinckley,* M. Matusz and P. A. Kibala
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
and P. D. Robinson
Department of Geology, Southern Illinois University, Carbondale, IL 62901, USA

(Received 14 February 1987; accepted 13 May 1987)

Abstract

OsBr}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right], M_{r}=933.63\), monoclinic, $P 2_{1} / a, \quad a=28.897$ (8), $\quad b=14.106$ (5), $c=9.605$ (4) $\AA, \quad \beta=93.21$ (4) ${ }^{\circ}, \quad V=3909$ (4) $\AA^{3}, \quad Z$ $=4, D_{x}=1.59 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo Ka, $\lambda=0.71069 \AA, \mu=$ $57.33 \mathrm{~cm}^{-1}, \quad F(000)=1812, T=295 \mathrm{~K}, \quad R=0.046$, 3857 unique observed reflections. The complex was synthesized by refluxing an acetic acid/acetic anhydride solution containing OsBr_{6}^{2-}, triphenylphosphine and sodium acetate. The central portion of the molecule contains a planar atomic array comprised of an Os atom bound to two cis Br atoms and a bidentate acetate ligand. Normal to the plane are two trans triphenylphosphine groups, bound to Os through their P atoms.

Introduction. (Acetato)dibromobis(triphenylphosphine)osmium(III) is an apparent member of a class of osmium complexes synthesized by Moore \& Robinson (1979) with general formula $\left[\mathrm{OsBr}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6}-\right.\right.\right.$ $\left.\left.\mathrm{H}_{5}\right)_{3}\right\}_{2}$], where R is aryl. Their preparation involved the air oxidation of $\left[\mathrm{OsBr}_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{3}\right]$ in the presence of the appropriate carboxylic acid. IR spectra indicated chelated arylcarboxylic ligands; a trans placement of

[^0]0108-2701/87/101880-03\$01.50
the Br ligands was proposed. The title compound was prepared in solution by reduction of the hexabromoosmate(IV) ion, OsBr_{6}^{2-}. The structure determination confirms the chelated binding of the carboxylate ligand, but the Br ligands are cis rather than trans.

Experimental. Preparation by dissolution of bis(tetra-n-butylammonium)hexabromoosmate(IV) $\quad(1.0 \mathrm{~g}$, 0.87 mmol), triphenylphosphine ($1.0 \mathrm{~g}, 3.8 \mathrm{mmol}$) and sodium acetate trihydrate ($2.0 \mathrm{~g}, 14.7 \mathrm{mmol}$) in a mixture of 20.0 ml acetic acid and 20.0 ml acetic anhydride. Mixture refluxed for 10 min during which time yellow crystals appeared. Mixture cooled, filtered, and the solid washed with acetic acid and chilled ethyl ether (yield 0.68 g). Crystals obtained by dissolving the solid in dichloromethane and layering with n-hexane.

Crystal used for data collection was $0.21 \times 0.11 \times$ 0.05 mm , brown, bladed. Rigaku AFC5S diffractometer, graphite-monochromatized Mo $K \alpha$ radiation, $\omega-2 \theta$ scans, scan speed $6^{\circ} \mathrm{min}^{-1}$, maximum of 3 scan repetitions to obtain $\sigma F / F<0 \cdot 10$. Lattice parameters from least-squares fit of 16 reflections in 2θ range $9-22^{\circ} .7672$ reflections measured ($h-34$ to $34, k 0$ to $16, l 0$ to 11); 7212 reflections unique, 3857 observed © 1987 International Union of Crystallography
$(I>3 \sigma I), \quad(\sin \theta) / \lambda_{\max }=0.595 \AA^{-1}, \quad R_{\mathrm{int}}=1.3 \%$ for 460 equivalent reflections. Three standard reflections $(3 \overline{3} 0, \overline{3} \overline{3} 0, \overline{2} \overline{1} \overline{1})$ varied by $-1 \cdot 11,-0.63$ and 0.96% respectively; thus no correction for decay was necessary. Data corrected for Lorentz and polarization. Numerical absorption correction performed (transmission range $0.54-0.74$) using a modified version of the program AGNOST (Coppens, Leiserowitz \& Rabinovich, 1965). Direct methods used to locate Os, Br and P atomic sites; Fourier and difference Fourier syntheses revealed all C -atom positions. Full-matrix least-squares refinement of F magnitudes performed on 407 variables including all non-H positional and anisotropic thermal parameters, one scale factor, and a secondary-extinction coefficient $\left(0.70918 \times 10^{-7}\right)$. Phenyl-ring H atoms placed in geometrically correct positions $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ but not refined. Two of the three methyl H atoms were located by a difference Fourier synthesis and the third H position was calculated; methyl H sites then geometrically optimized and fixed. H-atom B 's fixed at $1 \cdot 2 B_{\text {eq }}$ of associated C atom. Convergence yielded $R=0.046, w R=0.061$ $\left[w=1 / \sigma^{2}\left(\left|F_{o}\right|\right)\right], S=1.48$ and $(\Delta / \sigma)_{\max }=0.03$. Final difference synthesis showed twelve small intermolecular peaks $\left(0.58\right.$ to $1.39 \mathrm{e} \AA^{-3}$) in geometrical configuration suggestive of minor disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent; scanning-electron-microscope-based X -rayenergy spectroscopic analysis confirmed minor Cl presence. $(\Delta \rho)_{\min }=-0.72$ e \AA^{-3}. Solvent peaks considered insignificant and were not included in the structural model. Atomic scattering factors and anomalous-dispersion corrections from Cromer \& Waber (1974). All computer programs from the TEXSAN crystal structure analysis package (Molecular Structure Corporation, 1985).

Discussion. Positonal and equivalent isotropic thermal parameters are given in Table 1; Table 2 presents selected interatomic distances and angles.*

In this complex the Os^{111} atom is bound to two cis Br atoms, two P atoms of trans-situated triphenylphosphine ligands, and a bidentate acetate ligand (Fig. 1). Acetate binding to the Os atom is slightly asymmetric with $\mathrm{Os}-\mathrm{O}(1)$ and $\mathrm{Os}-\mathrm{O}(2)$ bond distances of $2 \cdot 109$ (9) and $2 \cdot 15(1) \AA$, respectively. This bonddistance asymmetry is matched by a similar difference in the two $\mathrm{Os}-\mathrm{Br}$ bonds, 2.450 (2) and 2.473 (2) \AA. The longer $\mathrm{Os}-\mathrm{O}$ bond is diametrically opposite to the shorter $\mathrm{Os}-\mathrm{Br}$ bond. It is interesting to note that the average $\mathrm{Os}-\mathrm{O}$ bond distance $(2 \cdot 130 \AA)$ is shorter than

[^1]Table 1. Positional and equivalent isotropic thermal parameters of the non- H atoms and their e.s.d.'s

$B_{\text {eq }}=$	$3)\left(U_{11}+U\right.$	$\begin{aligned} & +U_{33}+ \\ & \left.2 U_{23} \cos \alpha\right) \end{aligned}$	${ }_{12} \cos \gamma+$	${ }_{13} \cos \beta$
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Os	$0 \cdot 304504$ (20)	0.02128 (4)	0.86489 (5)	2.46 (2)
$\mathrm{Br}(1)$	0.31612 (5)	-0.02357 (12)	0.62042 (14)	3.77 (7)
$\mathrm{Br}(2)$	0.30365 (6)	0.19454 (10)	0.84694 (17)	3.92 (7)
P (1)	0.22261 (13)	0.00826 (25)	0.8167 (4)	$2 \cdot 7$ (2)
P(2)	0.38658 (12)	0.0199 (3)	0.9099 (4)	$3 \cdot 1$ (2)
$\mathrm{O}(1)$	0.2947 (3)	0.0229 (8)	1.0808 (9)	$3 \cdot 5$ (5)
$\mathrm{O}(2)$	0.3012 (3)	-0.1112 (7)	0.9751 (11)	$3 \cdot 7$ (5)
C(1)	0.1916 (5)	0.0997 (10)	0.7145 (15)	$3 \cdot 1$ (7)
C(2)	0.2117 (5)	0.1447 (11)	0.6078 (14)	$3 \cdot 2$ (7)
C(3)	0.1865 (7)	0.2127 (11)	0.5268 (16)	5 (1)
C(4)	0.1422 (6)	0.2342 (13)	0.5566 (20)	5 (1)
C(5)	0.1214 (6)	0.1892 (15)	0.6616 (22)	6 (1)
C(6)	0.1462 (6)	0.1235 (12)	0.7405 (20)	6 (1)
C (7)	0.1918 (5)	0.0031 (10)	0.9754 (14)	$3 \cdot 2$ (7)
C(8)	0.1971 (6)	0.0782 (13)	1.0662 (18)	4.6 (9)
C(9)	0.1757 (7)	0.0833 (18)	1.1862 (22)	6 (1)
$\mathrm{C}(10)$	0.1468 (8)	0.013 (2)	1.2223 (19)	8 (1)
C(11)	0.1398 (8)	-0.0655 (16)	$1 \cdot 1357$ (25)	8 (1)
C(12)	0.1618 (6)	-0.0692 (13)	1.0081 (16)	4.8 (9)
C(13)	0.2079 (5)	-0.1012 (10)	0.7203 (14)	2.9 (7)
C(14)	0.1890 (6)	-0.0956 (11)	0.5846 (16)	$4 \cdot 2$ (8)
C (15)	0.1811 (6)	-0.1779 (13)	0.5075 (16)	5 (1)
C(16)	$0 \cdot 1911$ (6)	-0.2651 (13)	0.5688 (19)	5 (1)
$\mathrm{C}(17)$	0.2085 (5)	-0.2718 (10)	0.7028 (16)	3.6 (7)
C (18)	0.2180 (5)	-0.1896 (11)	0.7781 (16)	3.7 (7)
C (19)	0.4160 (5)	-0.0824 (11)	0.8345 (15)	3.4 (7)
C(20)	0.3967 (6)	-0.1710 (11)	0.8482 (19)	4.8 (9)
C(21)	0.4184 (7)	-0.2482 (13)	0.7936 (23)	6 (1)
C(22)	0.4594 (8)	-0.2365 (16)	0.7221 (22)	7 (1)
C(23)	0.4779 (6)	-0.1475 (15)	0.7083 (19)	6 (1)
C(24)	0.4559 (6)	-0.0705 (12)	0.7643 (17)	$4 \cdot 3$ (8)
C(25)	0.4028 (5)	0.0114 (11)	1.0943 (14)	3.6 (7)
C(26)	0.4289 (6)	-0.0662 (12)	1.1522 (16)	4.3 (8)
C(27)	0.4377 (7)	-0.0726 (13)	1.2964 (18)	5 (1)
C(28)	0.4227 (6)	-0.0030 (17)	1.3787 (18)	6 (1)
C(29)	0.3974 (6)	0.0759 (15)	1.3258 (17)	6 (1)
C(30)	0.3875 (5)	0.0834 (12)	1.1831 (15)	4.1(8)
C(31)	0.4180 (5)	0.1208 (10)	0.8507 (14)	$3 \cdot 3$ (7)
C(32)	0.4524 (6)	0.1666 (12)	0.9323 (16)	4.6 (8)
C(33)	0.4778 (6)	0.2402 (13)	0.8821 (21)	5 (1)
C(34)	0.4683 (7)	0.2713 (13)	0.7463 (23)	6 (1)
C(35)	0.4352 (6)	0.2282 (13)	0.6633 (17)	5 (1)
C(36)	0.4107 (6)	$0 \cdot 1554$ (12)	0.7145 (16)	$4 \cdot 3$ (8)
C(37)	0.2958 (6)	-0.0670 (13)	1.0877 (17)	3.8 (8)
C(38)	$0 \cdot 2904$ (7)	-0.1139 (14)	1.2229 (18)	6 (1)

Table 2. Selected bond distances (\AA), bond angles $\left({ }^{\circ}\right)$, and their e.s.d.'s

Os	O (1)	$2 \cdot 109$ (9)		$\mathrm{P}(1)$	C(13)	1.84 (1)	
Os	$\mathrm{O}(2)$	$2 \cdot 15$ (1)		$\mathrm{P}(2)$	C(31)	1.80 (1)	
Os	$\mathrm{P}(2)$	2.387 (4)		$P(2)$	C(25)	1.81 (1)	
Os	$\mathrm{P}(1)$	$2 \cdot 393$ (4)		$P(2)$	C(19)	1.84 (2)	
Os	$\operatorname{Br}(2)$	2.450 (2)		O(1)	C(37)	1.27 (2)	
Os	$\mathrm{Br}(1)$	2.473 (2)		O(2)	C(37)	$1 \cdot 27$ (2)	
P(1)	C(7)	1.81 (1)		C(37)	C(38)	1.47 (2)	
$P(1)$	C(1)	1.82 (1)					
O(1)	Os	O(2)	$60 \cdot 9$ (4)	C(7)	P(1)	C(13)	$106 \cdot 2$ (6)
O(1)	Os	$\mathrm{P}(2)$	$90 \cdot 5$ (3)	C(7)	P(1)	Os	111.6 (5)
O(1)	Os	$\mathrm{P}(1)$	90.3 (3)	C(1)	$P(1)$	C(13)	$103 \cdot 3$ (6)
O(1)	Os	$\operatorname{Br}(2)$	93.3 (3)	C(1)	$P(1)$	Os	$120 \cdot 0$ (5)
O(1)	Os	$\mathrm{Br}(1)$	$165 \cdot 8$ (3)	C(13)	P(1)	Os	111.1 (5)
O(2)	Os	$\mathrm{P}(2)$	88.5 (3)	C(31)	$P(2)$	C(25)	$104 \cdot 7$ (6)
$\mathrm{O}(2)$	Os	$P(1)$	87.6 (3)	C(31)	$P(2)$	C(19)	$104 \cdot 1$ (7)
$\mathrm{O}(2)$	Os	$\operatorname{Br}(2)$	$154 \cdot 2$ (3)	C(31)	$P(2)$	Os	$116 \cdot 8$ (5)
$\mathrm{O}(2)$	Os	$\operatorname{Br}(1)$	$104 \cdot 9$ (3)	C(25)	$P(2)$	C(19)	103.5 (7)
$\mathrm{P}(2)$	Os	$\mathrm{P}(1)$	175.1 (1)	C(25)	$P(2)$	Os	$112 \cdot 1$ (5)
P (2)	Os	$\mathrm{Br}(2)$	91.5 (1)	C(19)	$P(2)$	Os	114.3 (5)
P(2)	Os	$\operatorname{Br}(1)$	89.0 (1)	C(37)	$\mathrm{O}(1)$	Os	92 (1)
$P(1)$	Os	$\mathrm{Br}(2)$	$93 \cdot 3$ (1)	C(37)	$\mathrm{O}(2)$	Os	$90 \cdot 2$ (9)
P(1)	Os	$\mathrm{Br}(1)$	89.0 (1)	O(1)	C(37)	C(38)	119 (2)
$\mathrm{Br}(2)$	Os	$\mathrm{Br}(1)$	100.93 (6)	O(2)	C(37)	$\mathrm{C}(38)$	124 (2)
C(7)	P(1)	C(1)	103.4 (7)	O(2)	C(37)	$\mathrm{O}(1)$	117 (1)

Fig. 1. Molecular structure and numbering scheme.
the mean Os-O distance of $2.148 \AA$ reported by Behling, Capparelli, Skapski \& Wilkinson (1982), for the bidentate acetate found in the $\mathrm{Os}^{\mathrm{V}^{1}}$ complex $\mathrm{K}\left[\mathrm{OsO}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{3}\right] .2 \mathrm{MeCO}_{2} \mathrm{H}$. Least-squares cal-
culations reveal a near-perfect central plane composed of the Os atom, the acetate ligand, and two Br atoms. Triphenylphosphine ligands reside on either side of the central plane and exhibit a $\mathrm{P}(1)-\mathrm{Os}-\mathrm{P}(2)$ bond angle of $175 \cdot 1(1)^{\circ}$. The central plane forms a dihedral angle of 89.70° with the plane defined by $\mathrm{P}(1)-\mathrm{Os}-\mathrm{P}(2)$.

References

Behling, T., Capparelli, M. V., Skapski, A. C. \& Wilkinson, G. (1982). Polyhedron, 1, 840-841.

Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035.
Cromer, D. T. \& Waber, J. T. (1974). In International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht, The Netherlands.)
Molecular Structure Corporation (1985). TEXSAN Structure Analysis Package. MSC, 3304 Longmire Drive, College Station, TX 77840, USA.
Moore, D. S. \& Robinson, S. D. (1979). Inorg. Chem. 18, 2307-2309.

Acta Cryst. (1987). C43, 1882-1885

Structure of Tetrakis(biuret)samarium(III) Nitrate, $\left[\mathrm{Sm}\left(\mathrm{NH}_{2} \mathrm{CONHCONH}_{2}\right)_{4}\left(\mathrm{NO}_{3}\right)_{3}\right.$

By Salim F. Haddad
Department of Chemistry, The University of Jordan, Amman, Jordan

(Received 21 April 1987; accepted 18 May 1987)

Abstract

Sm}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{3}, \quad M_{r}=748.69\), monoclinic, $C 2 / c, \quad a=17.256$ (2), $b=7.090$ (1), c $=20.545$ (2) $\AA, \quad \beta=109.6$ (5) ${ }^{\circ}, \quad V=2368$ (8) \AA^{3}, Z $=4, \quad D_{m}=2.090, \quad D_{x}=2.100 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \mu=26.4 \mathrm{~cm}^{-1}, F(000)=1484$, ambient temperature, $R=0.0185, w R=0.0252$ for 1526 reflections with $I_{o}>3.0 \sigma\left(I_{o}\right) . \mathrm{Sm}$ is located at site of symmetry 2 . The two biuret ligands in the asymmetric unit are samarium-bonded as bidentates via the carbonyl O atoms with a twist $\left(15 \cdot 1,15 \cdot 7^{\circ}\right)$ about the oxygen-oxygen line. One of the three nitrates in the molecular unit is centred at $\overline{1}$ and is disordered. The three O atoms of the disordered nitrate are distributed at eight positions, four with occupancy $\frac{1}{2}$ and four with occupancy $\frac{1}{4}$. The eight O -atom positions are imposed in part by hydrogen bonding. The $\mathrm{CN}=8$ coordination polyhedron is found by shape-parameter analysis to be closer to the square antiprism $D_{4 d}$ than the dodecahedron $D_{2 d}$ or the cube O_{h}. The twist angles, φ, in the dodecahedral BAAB trapezoids are 30.6 and 26.3°. The bidentate ligands span opposite edges of the rectangular faces of the square antiprism.

Introduction. Biuret $\left(\mathrm{NH}_{2} \mathrm{CONHCONH}_{2}\right)$ was first reported as a decomposition product of urea and of urea nitrate (Wiedemann, 1848). Wiedemann also noted the formation of a characteristic red-violet colour as biuret is added to copper(II) sulfate in alkaline media, an observation which is the basis of the well known biuret reaction, where a violet-red colour is produced when cupric salts are added to proteins or polypeptides in alkaline media (Brücke, 1883; Schiff, 1898). With biuret, the colour is believed to be due to the violet hydroxy-bridged dimeric $\mathrm{K}_{2}[\{\mathrm{Cu}-$ (NHCONHCONH) OH$\}_{2}$]. $4 \mathrm{H}_{2} \mathrm{O}$ complex (McLellan \& Melson, 1967), or due to the red $\mathrm{K}_{2}[\mathrm{Cu}-$ (NHCONHCONH) $]$. $4 \mathrm{H}_{2} \mathrm{O}$ complex (Freeman, Smith \& Taylor, 1961). In both the violet and the red complexes biuret behaves as a bidentate dianion bonding to $\mathrm{Cu}^{\mathrm{II}}$ via the amide N atoms in a cis-cis configuration. In the solid state free biuret assumes a trans-cis configuration as found in the crystal structure of biuret hydrate (Hughes, Yakel \& Freeman, 1961). It also assumes the trans-cis configuration in the crystal structure of bis(biuret)cadmium(II) chloride
(C) 1987 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, distances and angles involving the phenyl rings, H -atom coordinates and selected least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44050 (35 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

